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Abstract 

From an idea proposed by David Harker [Acta Cryst. 
(1953), 6, 731-736], the assembly of globular subunits 
in a protein can be treated as pseudo-atoms for 
normalization of observed electron diffraction intensi- 
ties. As demonstrated with published data from native 
or deoxycholate-treated bacteriorhodopsin, a multisolu- 
tion approach via the Sayre-Hughes equation can then 
generate phase solutions to 6 A resolution that compare 
quite favorably with those determined earlier by phase 
extension. The major problem in such determinations 
is identification of the best phase set, especially if 
no lower-resolution images of the protein are available. 
(However, 15 to 10A resolution image-derived phases 
could be used as a reference set to identify the correct 
solution.) A viable option may be to compare Patterson 
maps, calculated from trial map peak positions, to the 
experimental autocorrelation function. Trial phase 
determinations for the Omp F porin from E. coli outer 
membrane, on the other hand, are somewhat less 
successful because the fl-sheet secondary structure is 
less well modeled by an array of 'globs'. 

I. Introduction 

In recent years, there has been increasing activity, 
exploring the possibilities of direct determination of 
crystallographic phases for diffraction data from 
proteins. Although the large number of atoms in the 
unit cell can severely limit the application of traditional 
probabilistic methods (Karle, 1989), there have been 
alternative approaches (Hauptman, 1993; Miller, 
DeTitta, Jones, Langs, Weeks & Hauptman, 1993), 
where a nearly correct phase solution in a multiple set 
can be identified to lie near a previously identified 
optimal figure of merit so that these phases can be 
improved by annealing to determine the correct crystal 
structure (Weeks, Hauptman, Smith, Blessing, Teeter 
& Miller, 1995). Thus, given experimental X-ray 
intensities from a protein (e.og. containing up to 800 
atoms) measured to near 1.0 A resolution, there is now 
good reason to expect a favorable structure determina- 
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tion without the need to prepare heavy-atom derivatives 
or reliance on anomalous-scattering information. 

Currently, lower-resolution data sets cannot be 
assigned phase values by this procedure. However, 
there are reasons to believe that, at least within the 5 to 
6tk diffraction resolution limit, the intensities them- 
selves also should be amenable to direct analysis. As 
pointed out by Fan, Hao & Woolfson (1991), the low- 
angle region of the diffraction pattern contains the most 
intense reflections. Although there are fewer phase 
relationships per reflection than for a small-molecule 
structure, it has been argued by these authors that there 
should be no change in their quality for low-resolution 
protein data. Previous explorations of conventional 
probabilistic direct methods in protein X-ray crystal- 
lography, starting with initial information, e.g. from an 
incomplete MIR set, have demonstrated that these phase 
relationships can be very effective for completing the 
phase set (Reeke & Lipscomb, 1969; Podjarny, 
Schevitz & Digler, 1981). The same result has been 
noted in electron crystallography, where lower-resolu- 
tion information from the Fourier transform of an 
electron micrograph has been extended to the limit of 
the electron diffraction pattern (Gilmore, Shankland & 
Fryer, 1993; Dorset, Kopp, Fryer & Tivol, 1995; 
Dorset, 1996). Within the sampling limits of goniom- 
etry, an actual advantage of electron crystallography 
over X-ray crystallography is that, for macromolecules, 
all of the diffracted intensities are collected, including 
those in the very low angle region often occluded by 
beam stops in X-ray measurements. 

In electron crystallography, true ab initio phase 
determinations at low resolution have also been 
attempted. After building up a trial basis set, the 
Sayre equation and/or maximum entropy and likelihood 
have been found to be somewhat effective for electron 
diffraction intensities, the former when coupled with a 
phase-annealing process (Dorset, 1995a) and the latter 
when likelihood prediction was used to prune the 
phasing tree (Gilmore, Nicholson & Dorset, 1996). In 
X-ray crystallography, known information about the 
protein structure has been incorporated into the phase 
determination by constraining a match to a density 
histogram (Lunin, Urzhumetsev & Skovoroda, 1990). 
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Alternatively, trial structures have been generated using 
random spherical density generators followed by a 
calculation of structure-factor amplitudes to match to 
the observed data set (Lunin, Lunina, Petrova, 
Vernoslova, Urzhumtsev & Podjarny, 1995; Andersson 
& Hovm611er, 1996). 

As early as 1953, Harker proposed that the Fourier 
transform of globular density units in proteins would be 
the optimal means for normalizing the low-resolution 
intensity data. By inference, it is clear also that the use 
of pseudo-atom transforms might also affect how a 
protein structure could be determined by direct methods 
at low resolution. For example, as is shown in another 
publication (Dorset, 1997), the 6,~, centrosymmetric 
projected electron diffraction data set from the integral 
membrane protein halorhodopsin reduces to a small- 
molecule problem, easily solved by symbolic addition 
after these data are adjusted for the fall-off in the 
Fourier transform of an average Gaussian glob, 
corresponding approximately to the cross section of an 
a-helix. The appropriateness of this approximation is 
further evaluated in this communication, considering 
the case of non-centrosymmetric projections, as well as 
density distributions (e.g. /3-barrels) that may not 
correspond so closely to the atomistic model. 

2. Electron diffraction data 

2.1. Native bacteriorhodopsin 

Electron diffraction amplitudes and image-derived 
crystallographic phases from glucose-embedded bac- 
teriorhodopsin have been published to 3.5 A resolution 
(Henderson, Baldwin, Downing, Lepault & Zemlin, 
1986). In the [001] projection, the.protein crystallizes 
in plane group p3, where a - 62.4 A. The most reliable 
phase information from image Fourier transforms, 
however, was measured out to 6,~,, the resolution 
cut-off used in this study. [This corresponds approxi- 
mately to the resolution limit reliably extended from a 
10A image-derived basis set by the Sayre equation 
(Dorset, Kopp, Fryer & Tivol, 1995) arid is near the 
minimum of (lobs) vs sin0/2 found for many proteins.] 
The layer structure at this resolution contains the 
characteristic assembly of seven c~-helices in the 
asymmetric unit (Fig. la). 

2.2. Deoxycholate-treated bacteriorhodopsin 

If the purple membranes from Halobacterium 
halobium are extracted with sodium deoxycholate, 
the unit-cell axis of the bacteriorhodopsin two- 
dimensional crystals is found to shrink to 
a -- 57.3,~,, while retaining the p3 symmetry. Elec- 
tron diffraction amplitudes and image-derived phases 
from glucose-embedded preparations were used by 
Glaeser, Jubb & Henderson (1985)°to determine the 
delipidized crystal structure to 6A resolution and 

these data were used as a basis for the direct analysis 
described below. As shown in Fig. l(b), there is a 
close resemblance of the protein structure to that of 
the native membrane form (Fig. la). 

2.3. Omp F porin 

Two crystalline forms of Omp F porin, reconstituted 
in phospholipid bilayers from the outer membrane of 
Escherichia coli and then glucose embedded, had been 
investigated by cryoelectron microscopy and Fourier 
transforms of experimental micrographs yielded phase 
information to 3.2A resolution (Sass, Biildt, Beck- 
mann, Zemlin, Van Heel, Zeitler, Rosenbusch, Dorset 
& Massalski, 1989). Diffraction amplitude data from 
the double-layer form, involving stacking of two 
membrane layers in plane group p31m, a = 72.0,~,, 
were shown to become weak beyond a resolution limit 
of 6 ,~ (Dorset, 1996), so that only this region was used 
for direct phase determination. Unlike the other two 
membrane protein projections used in this study, the 
porin is primarily composed of a fl-barrel (Fig. lc). 

3. Structure analysis 

3.1. Normalization of data 

The premise of the analytical method described in 
this paper is that local density distributions in the 
projected structure, i.e. globular cross sections, can be 
simulated as pseudo-atoms. Unlike the original 
approach taken by Harker (1953), where these globs 
were assumed to be spherical, a Gaussian density profile 
was postulated instead, merely because its Fourier 
transform (FT), also Gaussian, is well behaved (Gaskill, 
1978) [i.e. no 'ringing' effect found in the sinc(u) 
function in the FT of a sphere cross section]. 
Furthermore, it was also assumed that the cell edges 
could be re-scaled to 1/10 their original size so that the 
electron scattering-factor curve for carbon could serve 
as an approximation for the Gaussian glob transform. 
[As pointed out earlier (Dorset, 1997), the tenfold 
factor is justified by comparing the 15 A center-to- 
center distance for two touching ct-helices to the 1.54 
C - - C  single-bond distance.] Thus, with re-scaling, for 
a unit-cell edge from e.g. 62 to 6.2 ,~,, the resolution of 
the data set would be transformed from 6 to 0.6,~ for 
purposes of the simulation. Approximation of a 
Gaussian function by fc is partially justified by its fit 
by a sum of weighted Gaussians (Doyle & Turner, 
1968) but, strictly speaking, its shape is more 
Lorentzian in character [so that its Fourier transform 
is actually an exponential function rather than a 
Gaussian (Champeney, 1963)]. 

The scattering factors were then used to calculate 
Wilson (1949) plots from the observed intensity data 
from all three proteins. In all cases B_~ 0.0A 2, 
indicating that the fall-off of diffracted intensity is 
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matched reasonably well by the scattering-factor 
approximation without need for further shape adjust- 
ments. 

From the normalized intensity values, IEhl magni- 
tudes were calculated from IEhl 2 --I~bs/efc,  again 
where fc  is the carbon scattering factor and the 

statistical weight e compensates for special classes of 
reflections (for the examples  considered, important only 
for plane group p31m). As usual (Karle & Hauptman,  
1956), the IEhl were scaled such that <lghl 2) = 1.000. 
An E0oo value was also estimated from the number  of 
glob sites in the unit cell. 
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Fig. 1. Potential maps (6,~, resolution) for membrane proteins: situation 1, crystallographic phases from original images: (a) native 
bacteriorhodopsin, (b) deoxycholate-treated bacteriorhodopsin, (c) Omp F porin; situation 2, phases from atomistic approximations of 
structure via structure-factor calculation: (d) native bacteriorhodopsin, (e) deoxycholate-treated bacteriorhodopsin, (f) Omp F porin; situation 
3, phases from Sayre extension of 15 ,~ resolution phases: (g) native bacteriorhodopsin, (h) deoxycholate-treated bacteriorhodopsin, (i) Omp F 
porin. 
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Table 1. 
simulating 

Success of atomistic approximation for 
low-resolution structure factors from 

membrane proteins 

Mean phase deviation 
(°) 

37 

R factor 

0.48 

Protein (no. of phases) 

Bacteriorhodopsin 
(native) (50) 

Bacteriorhodopsin 
(deoxycholate-treated) 
(35) 

Omp F porin (42) 
29 0.33 
46 0.41 

3.2. Direct phase determination 

Three-phase structure invariants (Hauptman, 1972) 
of the 2? 2 type were then generated for the hk0 data sets, 
i.e. phase relationships where ~o h --~o k + tph_ k, where 
h = hlkll I and k = h2k212. Next, a convergence proce- 
dure (Germain, Main & Woolfson, 1970) determined 
how each set of reflections could be assigned phases 
most efficiently from the smallest number of reflections 
having large IEhl values. For the two structures in p3, 
three reflections were required. Since every hk0 
reflection is a structure invariant (Rogers, 1980), these 
were assigned algebraic values a -- 45, 135 °; 
b, c = 4-45, 4-135 ° to generate 32 trial permutations. 
(Inclusion of the a - - 4 5 , - 1 3 5  ° permutations gener- 
ates 32 additional enantiomorph sets.) For plane group 
p31m, two large IEhl hO0 reflections had centrosym- 
metric values so that the tests, involving four 
unknowns, were made on a , b = 0 , 1 8 0  °; c - -  
45, 135°; d = 4-45, +135 °, since each hkO reflection is 
again invariant (Rogers, 1980). 

The permuted algebraic phases were then used as 
input sets for the Sayre-Hughes equation (Sayre, 
1980): Eh =(1/N)(EkEh_k), with the E00o term as 
defined above. After expanding the basis to a new 
phase set, some method was needed to determine the 
most probable solution from the calculated test maps 
based on the phased values of IEhl. This was, in fact, 
not a straightforward process. In principle, using 
arguments of Hoppe, Gassmann & Zechmeister 
(1970), there must be some criterion for finding a 
'best' density distribution. Previously, it has been 
shown (Dorset, 1996) that the Luzzati criterion 
(Luzzati, Tardieau & Taupin, 1972; Luzzati, Maiiani 
& Delacroix, 1988) of density flatness (Ap 4) is not 
totally satisfactory for low-resolution macromolecular 
determinations, particularly for projections. Since a 
pseudo-atom model is being evaluated, the Stanley 
(1986) criterion of ~-"~i~i was  also tested, i.e. the 
values n -  4, 5 were monitored for each map. As a 
default criterion, it was assumed that a relatively low 
resolution image of the two-dimensional crystals 
could be recorded in the electron microscope and 
that its transform, yielding phase values to 15~,, 
could serve as an independent test for phases also 

determined in this region by direct methods. 
[Although, in principle, predicted values of IEhl 
could be compared to observed magnitudes, previous 
studies (Dorset, 1995a) have shown that the R factor 
based on these normalized magnitudes is not very 
reliable at low resolution.] 

Trial phase sets from a smaller number of solutions 
were then generated by another cycle of the Sayre- 
Hughes equation. After identification of pseudo-atomic 
positions, a structure-factor calculation was carried out, 
again via re-scaling and employment of the carbon 
scattering factor as the approximation to the glob 
Fourier transform. This initiated a Fourier refinement 
for improvement of the phase set. 

In no case were any other techniques, e.g. density 
modification (Wang, 1985), used to improve the initial 
phase set. The sole object of this study was to test how 
well a pseudo-atom approach would serve to find a 
useful starting point for a low-resolution structure 
analysis. 

4. Results 

4.1. Success of pseudo-atom approximation 

The simulation of the glob Fourier transform by a 
carbon scattering factor, after a dimensional re-scaling, 
was found to give an acceptable match to the phase set 
in all cases, even if the diffraction amplitudes were not 
accurately simulated by the structure-factor calculation 
(Table 1). In the case of native bacteriorhodopsin, eight 
pseudo-atom positions were chosen initially for calcula- 
tion of structure factors (i.e. one tilted helix was 
initially sampled by two globs) and the generated phases 
produce a map (Fig. ld) that could be compared 
favorably to the density distribution found experimen- 
tally (Fig. la). A similar comparison could be made 
(Figs. l e and b) for the deoxycholate-treated protein, 
where seven peak positions were used to calculate 
structure factors. The simulation was not so favorable 
for the Omp F porin, however. Five density maxima 
were chosen for the structure-factor calculation and 
these were returned in the ensuing potential map 
generated from these phases (Figs. If  and c). However, 
there was no continuity of the generated map that would 
suggest a fl-sheet substructure, despite the rather good 
agreement between calculated and experimental phases. 

4.2. Native bacteriorhodopsin 

After generating 360 Z' 2 triples from 50 unique IEhl 
terms (Ami n - -0 .2) ,  algebraic values were assigned to 
the phases, q9430 - - a ,  ~ 3 5 0 - - b ,  ~ 1 7 0 - - c ,  as described 
above, to find 32 trial solutions. One cycle of the 
Sayre-Hughes equation produced a total of 11 phases 
from which E maps were generated using E0o0- 
(21) ~/2, assuming seven 'atoms' to be present in the 
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asymmetric unit. (Note the two helix areas originally 
considered to be independent were combined.) The 
distribution of maps in terms of the values for ~-'~i /04 
is given in Fig. 2(a). The best solution ( a - - 1 3 5 ,  
b - - - 4 5 ,  c = 135 °) was contained in a cluster near 
the lower end of the scale, narrowing the choices to 
seven. Tests of overlapping phases . (three reflections) 
in the generated sets against a 15A image restricted 
this choice to three. Expansion of these phase sets by 
another convolution cycle allowed one set to be 
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Fig. 2. Distribution of multiple structure solutions from the Sayre 
equation in terms of ~--~i p/4 (maps calculated with E h including E0oo): 
(a) native bacteriorhodopsin, (b) deoxycholate-treated bacteriorho- 
dopsin, (c) Omp F porin. 

Table 2. Phase determination (mean deviation)for 
native bacteriorhodopsin ( ~ ) 

Most intense data 
All 50 data (18 reflections) 

Structure factors from first 
Sayre model 63.3 40.9 

Second Sayre extension 64.2 45.9 
Fourier refinement 1 61.5 41.6 
Fourier refinement 2 65.2 38.4 
Sayre.extension of 

15 A image phases 63.2 52.9 

chosen by the match to the low-resolution image set 
(nine reflections). 

The complete phase set from two possible starting 
points was then monitored. First, the best solution found 
from the first, incomplete, Sayre expansion of a basis 
set could be interpreted in terms of possible helical 
positions (Fig. 3a). [Although the exact features of this 
structure would not be known in a true ab initio 
determination, most of the peaks in this figure 
correspond to true helix sites depicted in Fig. l(a)]. 
When these were used to calculate structure factors (via 
the re-scaling process described above), the mean phase 
agreement to the previous image-derived phases could 
be calculated (Table 2). A nearly equivalent solution 
was found when the Sayre-derived phases were used for 
another convolution cycle. Several attempts were made 
to improve this structure from this point. The best 
procedure started with helix coordinates from the map 
calculated with phased IEhl values (Fig. 3b). After two 
cycles of Fourier refinement, there was a significant 
improvement for phases of the most intense reflections, 
yielding the map in Fig. 3(c). A comparison of helix 
positions from this map to the ones of the ideal structure 
is given in Table 3. The mean difference in positions is 
1.9A. 

4.3. Deoxycholate-treated bacteriorhodopsin 

A total of 271 r 2 triples (Ami n --  0.2) were generated 
from 35 unique reflections in order to find the most 
optimal assignment of phases from the least number 
of reflections with large IEhl magnitudes. Algebraic 
values were then assigned to three reflections, ~042 o - a, 
q9430 = b, ~0350 -- c, following the scheme given above, 
and these were used to generate 32 trial solutions by one 
cycle of the Sayre-Hughes equation (using the same 
value for E00o as before). After generating trial E maps 
from the resultant set of ten unique reflections, the 
distributions of ~-~i pn were then plotted, the grouping of 
the n - - 4  maps is given in Fig. 2(b). Five possible 
solutions were chosen at the lower end of the scale, 
corresponding to the group with the largest number of 
examples. Within this subset, there was only one 
solution that also corresponded to the best agreement 
with 15 ~, resolution image-derived phases (three over- 
lapping reflections) and that occurred when a = 135, 
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b =  135, c = - 4 5 " .  Although some of the helix 
positions were evident in the potential map calculated 
from this small phase set [compare Fig. 4(a) to Fig. 
l(b)], a second cycle of the Sayre convolution was 
carried out, giving the phase agreement shown in 

'~3," 77 '/~)L~,.~ --~.__:---.~9~ 
• " - i - ~ :  - - ~ " / /  \\ ~ ' ~ J  " ' ~ _ _ i  

' "~i" ~"c__~.~,~_,~O.~_~.; ~ , ,  ':':.-'.',l~),,-~ ~ o.,, 0~i'~-~"' "] 
(a) 

(b) 

(c) 
Fig. 3. Phase determination of native bacteriorhodopsin, potential 

maps: (a) initial phase set from first Sayre expansion, (b) E a map 
(phases from second Sayre expansion), (c) F h map after Fourier 
refinement. 

Table 3. Major pseudo-atom density centers in structure 
determinations 

Native bacteriorhodopsin 

Actual structure (image phases) After Fourier refinement 
x y x y 

0.359 0.334 0.372 0.299 
0.458 0.213 0.460 0.170 
0.393 0.000 0.359 -0.027 
0.255 -0.200 0.292 -0.171 
0.164 -0.136 0.170 -0.126 
0.218 0.037 0.228 0.017 
0.218 0.190 0.200 0.158 

Deoxycholate-treated bacteriorhodopsin 

Actual structure (image phases) After Fourier refinement 
x y x y 

0.389 0.361 0.365 0.353 
0.507 0.245 0.493 0.223 
0.434 0.011 0.400 -0.026 
0.349 -0.159 0.287 -0.230 
0.199 -0.137 0.185 -0.128 
0.245 0.047 0.280 0.057 
0.237 0.207 0.239 0.201 

Omp F porin 

Actual structure (image phases) After Fourier refinement 
x y x y 

0.122 0.122 0.117 0.117 
0.428 0.131 0.467 0.144 
0.337 0.251 0.295 0.189 
0.521 0.292 0.538 0.281 
0.491 0.491 0.482 0.482 

Table 4 and the E map shown in Fig. 4(b). Helix 
positions obtained from this map were then used to start 
two cycles of Fourier refinement, with the increase in 
phase accuracy (especially for the most intense reflec- 
tions) reviewed in Table 4. The final potential map is 
shown in Fig. 4(c). Peak positions from it are compared 
to the helix locations of the ideal structure in Table 3. 
The mean difference is 1.6 ,h,. 

4.4. Omp F porin 

From 42 unique data, 291 ~2 triples were generated 
to find a phasing sequence via the convergence method. 
Algebraic terms were assigned, therefore, to four strong 
reflections, ~O4o o = a, ~os00 = b, q9630 - -  C ,  q9330 = d, the 
former two axial maxima having centrosymmetric 
values. These were then expanded by the Sayre-Hughes 
equation into 27 unique phases. [The value assumed for 
E0o o was 3.56, i.e. (12)1/2.] Using the values of ~--~A ~ ,  
n -- 4, 5, to evaluate the 32 generated E maps, it was not 
possible (Fig 2c) to find a cluster of solutions that 
satisfied criteria similar to the other proteins investi- 
gated in this study. On the other hand, comparison of 
trial phase sets with values from an assumed 15,~ 
resolution image (five overlapping values) readily 
identified the best phase set (generated when 
a -- 0, b = 180, c = 45, d = -135°). A second convo- 
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lution was carried out with this basis to give the phase 
agreement indicated in Table 5. 

The potential map found from after the second 
cycle of the Sayre-Hughes equation, shown in Fig. 
5(a), was not appreciably different from the one 

7 " ;© 

(a) 

(b) 

(c) 

Fig. 4. Phase determination of deoxycholate-treated bacteriorho- 
dopsin, potential maps: (a) initial phase set from first Sayre 
expansion, (b) Eh map after second Sayre expansion, (c) Fh map 
after Fourier refinement. 

Table 4. Phase determination (mean deviation)for 
deoxycholate-treated bacteriorhodopsin (°) 

Most intense data 
All 35 data (14 reflections) 

From second 
Sayre expansion 61.1 38.6 

Fourier refinement 1 50.3 24.0 
Fourier refinement 2 53.8 22.9 
Sayre.expansion of 

15 A image phases 78.7 92.6 

Table 5. Phase determination (mean deviation)for Omp 
F porin (~) 

Most intense data 
All 42 data (15 reflections) 

From second 
Sayre expansion 62.0 53.5 

Fourier refinement 1 69.2 61.9 
Fourier refinement 2 76.4 65.9 
Sayre.expansion of 

15 A image phases 72.2 72.3 

calculated from phased E values. If five unique 
density sites were identified and used for Fourier 
refinement, the phase accuracy did not improve (Table 
5). Nevertheless, the potential maps (Fig. 5b) 
resemble the one shown in Fig. l ( f ) .  A comparison 
of major peak positions from this map with major 
density centers in Fig. ol(C) is given in Table 3. The 
mean difference is 1.4A. 

4.5. Improvement of scattering factors 

Attempts were made to improve the fit of the 
amplitude transform of the glob model to the observed 
structure-factor amplitudes for the two bacteriorhodop- 
sin structures. While thefc  approximation was meant to 
approximate a Gaussian function, it is really closer to 
Lorentzian shape (Doyle & Turner, 1968). Thus, 
various Gaussian and Lorentzian functions were eval- 
uated to improve the phenomenological scattering factor 
with the intent to match the fall-off of (Ifobsl) vs sin ¢p/~.. 
This was, in fact, a difficult task, since the average of 
IFobsl within overlapping resolution shells did not 
produce a smooth sampling of the glob scattering 
envelope. This was because of a strong influence of a 
'molecular transform' of glob clusters (i.e. interference 
between scattering centers). 

For native bacteriorhodopsin, a trial Gaussian func- 
tion could lower the R factor, either with an eight-atom 
(0.38) or a seven-atom (0.44) model (compare to Table 
1). Similar improvements could be found with various 
Lorentzian functions. Equivalent R values to the value 
in Table 1 could be found for the deoxycholate-treated 
protein when a Lorentzian scattering factor was used. 
Because of the inadequacy of the glob approximation, 
such fits were not attempted for the Omp F porin. 



452 PSEUDO-ATOM APPROACH TO PHASE DETERMINATION 

4.6. Evaluation of  the phase determination and figures 
of  merit 

Since the best results were obtained from the 
deoxycholate-treated bacteriorhodopsin data, the accu- hkO IFobsl 
racy of the phase determination itself was evaluated 400 52.0 
further in terms of the pseudo-atomistic model. After 700 27.0 

the structure-factor magnitudes had been normalized 410 45.0 
610 27.0 

withfc  and the assembly of z~ 2 invariants, as described 320 46.0 
above, the triples were then listed in descending order 420 50.0 

ofA = (2/Nll2)lEhEkEh+kl. In the list of the 19 largest A 330 42.0 
values (down to A -- 0.84), the mean average value of 430 45.0 

630 17.0 
~s=~o h+~0k+~o_h_ k was found to be 514 -32  ° 140 59.0 
(expected value 0°), assuming that the true (i.e. 240 45.0 
image-transform) values for the algebraic terms defined 250 26.0 

above known a priori. This appraisal, as well as the 350 31.0 
earlier analysis of halorhodopsin (Dorset, 1997), 450 15.0 

160 24.0 
support the statement made by Fan, Hao & Woolfson 260 19.0 
(1991) that the phase relationships themselves should be 170 19.0 
reliable in this low-angle region. If a phase solution via 
the algebraic unknowns was then attempted by 

(a) 

. 

(b) 
Fig. 5. Phase determination of Omp F porin, potential maps: (a) F h 

map after second Sayre expansion, (b) F h map after Fourier 
refinement. 

Table 6. Deoxycholate-treated bacteriorhodopsin 
phases (o) after symbolic addition, assuming that 

~o42 o = 135, q943 o = 135, q935 o = - 4 5  ° are known 

(symbolic addition) ~ (image transform) 

0 -52  
-225 -154 

- 9 0  -41 
-45  -75  
-45  11 
135 122 
90 132 

135 143 
-90  3 
-90  - 8 7  
- 9 0  -157 

0 -75  
-45  -44  
-45  90 
135 162 

-45  169 
-135 98 

' symbolic addition', (IA~ol) - -  54 ° for 17 reflections 
when the nearly correct test values (a = 135, b --- 135, 
c - - 4 5  ~') were chosen. Most of the error was found in 
the weaker reflections (Table 6), as demonstrated by the 
appearance of the potential map calculated from this 
partial phase set (Fig. 6). To justify this solution 
experimentally with phases from reflections present in 
both sets, an image of the protein crystals would have to 
be recorded to at least 10 A resolution. 

However, there may be other options to be used as 
figures of merit (FOM) so that the correct structure can 
be identified in a multiple set just from the diffraction 
data. If the ten reflections phased from the first Sayre 
convolution were used to calculate 32 trial potential 
maps, the peaks from these could then be used for a 
subsequent structure-factor calculation. There were two 
possible FOM's ,  therefore, for.structure identification. 
If the approximate scattering factor were good enough, 

",7: . -  ~--~.._':~._ "---, ,"-,, ".': ",',; "-:-- 
* . - I t  . . - '  ' ~ ~_~ .  

LD' c-.; 

" "/ ~ :  ~" r"'~tUt"~JJ'" " - ! - ' : ~ i  .... 

7 : ~ -- :_.'-'--:: ,, " , '~,-"/,  i : ; " - : . ~  
,' "; ', ." ~ - - . .  j '  . ' 3. ,' !~ . : ~ "  

.,-:.,-_-- ,- 
, . . , 7~ - .  ,,,,~-~ . - . ,  ,_~, : : , ~ :  <_, ~. ~ :,.j 

\ il ". i ,  i j, ~ - / ~  - "  " . - ,  " '  
' ~  ~ ~ '  " f  [ ' ~ . . - .  - : . - . "  

~ , . . - - - ~ - . '  . . . .  x _ j . "  ~ ' '- . , , - '  - ' . "  
=_.\,, . . ~ \  . . . - _ ~ . ,  \ ' , ,  , ~ '  . ~ c . . . . ,  

Fig. 6. Potential map for deoxycholate-treated bacteriorhodopsin from 
partial phase set found by symbolic addition (Table 6). 
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perhaps the R factor would suffice. If not, the complete 
Ica~c list could then be transformed to a calculated 
Patterson function to compare to the one (Fig. 7a) 
determined from lob s. Use of just the R factor to 
distinguish the correct structure proved to be completely 
worthless (even though it was of some use for Fourier 
refinement). On the other hand, visual match of 
Patterson functions narrowed the solution choices 
down to two (or possibly one if the flatness of the 
map was also considered) - one of which corresponded 
to the most correct phase set (Fig. 7b). [This 
comparison could be quantitated with Patterson correla- 
tion coefficients (e.g. see Beurskens & Smykalla 
(1991).] The identified solution could then be expanded 
as described above. 

5. Discussion 

From the results presented above, it is clear that an 
atomistic approach to solving protein crystal structures 
in projection is best suited to cases where the density 
distribution of subunits is well modeled by an assembly 
of globs. Halorhodopsin [considered in a previous study 
(Dorset, 1997)] and two forms of bacteriorhodopsin 
provide views down the axes of a-helices, which, on re- 
scaling, might just as well be treated as 'atoms' to a 
good first approximation. The Omp F porin structure, 
on the other hand, because it is mostly composed of a 
/3-sheet, can only be visualized as the loci of maximal 
density but their continuity in the projected barrel 
structure is not apparent after the analysis. (However, 
another difficulty with this analysis may be that only the 
amplitudes of the image transform were used rather than 
structure-factor magnitudes measured from electron 
diffraction patterns.) 

The enticement of using multisolution methods in 
protein electron crystallography is that information 
from an electron microscope image recorded at modest 
resolution might also be obtained with very little 
difficulty. It is instructive in this context to compare 
the direct phasing results given above to those found if 
just the 15A image phases are extended to the 6,~ 
diffraction limit by the Sayre equation [using E values, 
which have been found to provide the most accurate 
phase prediction in earlier work (Dorset, 1995a,b)]. 
The phase accuracy for native bacteriorhodopsin is 
given in Table 2. While the overall mean error for the 
complete phase set, after extension, does not appear to 
be very different from the one found in this ab initio 
study (i.e. where 15 ,~, phases were used only to identify 
the correct solution), it is apparent from the projected 
potential map (Fig. lg) that the correct structure could 
not be generated by phase extension from this lower 
resolution. Therefore, the direct determination gives 
much more accurate phase estimates for the most 
intense reflections than does the phase extension from a 
15 ,~, basis. [However, note that another phase exten- 

sion, based on maximum-entropy and likelihood 
methods (Gilmore, Shankland & Fryer, 1993) had 
been much more successful from this lower-resolution 
starting point. Also, it is clear that there are optimal 
starting resolutions for phase extension via the Sayre 
equation (Dorset, 1996).] Comparison of phase devia- 

(a) 

, - . -  , \  -. j . :  ,..' ~ . .  , . ,  ; ?.~-'=-=---. '. ~ ' ~_ j . ~ -  

Fig. 7. Patterson functions for deoxycholate-treated bacteriorhodop- 
sin: (a) calculated from lob~; (b) calculated from lcalc when 'atoms' 
from a =  135, b= 135, c = - 4 5  ° map are used for a structure- 
factor calculation; (c) as in (b), but for a = 45, b = 45, c = -45 °. 
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tions after extension of the 15 A resolution image phases 
to those from the direct determination also is far worse 
for deoxycholate-treated bacteriorhodopsin (Table 4) or 
Omp F porin (Table 5), as revealed by the projected 
potential maps [Figs. l(h), (i), respectively]. A similar 
comparison has also been made for halorhodopsin in 
favor of the pseudo-atom approach to phase determina- 
tion (D. L. Dorset, unpublished data). 

Thus, when the atomistic model is a suitable 
approximation, ab initio phase determination itself 
seems to be sufficiently accurate for generating a nearly 
correct structure, particularly when the initial solution 
is optimized by Fourier refinement. There is, of course, 
much room for further improvement of the phase set 
from a variety of approaches including solvent flatten- 
ing (Wang, 1985), histogram matching (Zhang & Main, 
1990), as well as maximum-likelihood tests (Gilmore, 
Nicholson & Dorset, 1996). 

The weakness of the current methodology seems to be 
the lack of a robust figure of merit to identify the best 
solution after generation of numerous trials, especially 
if only diffraction data are used. It is already known that 
standard FOM's  employed in small-molecule direct 
phasing are not reliable, as discussed earlier (Fan, Hao 
& Woolfson, 1991). Obviously, there have to be 
optimal constraints imposed on accepting trial potential 
maps calculated from incomplete phase sets. While the 
concepts of map smoothness and flatness have been 
shown to be insufficient in themselves for structure 
identification (Dorset, 1996), it is clear from Fig. 2 that 
correct solutions also cannot have a density distribution 
that is too 'peaky' .  Part of the problem may be the 
breakdown of these criteria as absolute indicators for 
structure projections, a criticism that can be made of the 
Cochran (1952) condition at atomic resolution. On the 
other hand, at atomic resolution, prior knowledge of 
chemical composition and geometry is an additional 
criterion that can be advantageous for identification of a 
correct structure - but this foreknowledge is not 
available for an unknown protein structure at low 
resolution. The demands placed on protein structure 
determination at low resolution, therefore, are actually 
more stringent than for the small-molecule case. For 
future work, other approaches, such as maximum- 
likelihood predictions (Gilmore, Nicholson & Dorset, 
1996) may be more successful than traditionally 
employed FOM's .  Alternatively, as demonstrated in 
the above trial, the comparison of calculated Patterson 
functions to the observed autocorrelation function seems 
to be an option worthy of further exploration. 

In summary, the pseudo-atom approach to determin- 
ing projected protein structures at low resolution seems 
to be suitably valid as long the protein itself contains a 
substructure that can be well modeled by globs. The 
most probable phase-invariant relationships are reason- 
ably accurate to lead to a useful solution. Although 
better approximates to the glob scattering factors than a 

re-scaled fc curve can be found, they still do not permit 
the determination to be completed with the same 
accuracy found in small-molecule crystallography, 
partially because the exact nature of an unidentified 
globular subunit is unknown a priori - in terms of both 
its breadth and its ellipticity. 

Research was supported by a grant from the National 
Institute of General Medical Science, GM-46733, which 
is gratefully acknowledged. 
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